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Abstract

We present a physically based system for creating animations of novel words and phrases from text and audio input
based on the analysis of motion captured speech examples. Leading image based techniques exhibit photo-real
quality, yet lack versatility especially with regard to interactions with the environment. Data driven approaches that
use motion capture to deform a three dimensional surface often lack any anatomical or physically based structure,
limiting their accuracy and realism. In contrast, muscle driven physics-based facial animation systems can trivially
integrate external interacting objects and have the potential to produce very realistic animations as long as the
underlying model and simulation framework are faithful to the anatomy of the face and the physics of facial tissue
deformation. We start with a high resolution, anatomically accurate flesh and muscle model built for a specific
subject. Then we translate a motion captured training set of speech examples into muscle activation signals, and
subsequently segment those into intervals corresponding to individual phonemes. Finally, these samples are used
to synthesize novel words and phrases. The versatility of our approach is illustrated by combining this novel speech
content with various facial expressions, as well as interactions with external objects.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — Physically based modeling; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism — Animation

1. Introduction

Photorealistic facial animation is both difficult to achieve
and in high demand, as illustrated by [PLB*05], which
discussed some of the challenges faced in recent block-
buster films and high profile research efforts. Many com-
puter graphics practitioners are interested in animating con-
versation (see e.g. [CPB*94, CVBO01]), and this has led to
enormous interest in the key ingredients of speech and ex-
pression. Moreover, as stressed by [CM93], visible speech
plays a large role in the interpretation of auditory speech.

Along the lines of talking presidents in “Forest Gump,”
[BCS97] proposed a method that used existing video footage
to create a new video of a person speaking novel words.
[EPOO] also proposed an image-based approach that relied
on the morphing of the visemes associated with phonemes.
These results were further improved using a multidimen-
sional morphable model in [EGP02] and used for retarget-
ing in [CEOS]. Although image based techniques produce
animations of photo-real quality, they lack the versatility of
some other approaches, e.g. it would be difficult to use them
when the face has to interact with elements from the envi-
ronment.
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The idea of driving a three-dimensional character from
text and audio (as in voice puppetry [Bra99]) is quite com-
pelling. Data driven approaches tend to use motion capture
data (see e.g. [Wil90, GGW™*98]) to drive a three dimen-
sional surface mesh. [CFP03] took this approach using inde-
pendent component analysis to separate speech from expres-
sion (see also [CFKPO04]). Similarly, [KMTO03] used PCA
of marker data to determine facial movement parameters.
[CBO5] used a bilinear model that separates expression from
speech in order to drive a three dimensional blend shape an-
imation with video input. In a similar vein, [DLNOS5] con-
structed a speech co-articulation model that can be mixed
with keyframing in a manner that preserves expressive-
ness. [VBPPO5] used multilinear models to separate expres-
sions, visemes and identity in a three dimensional data set,
enabling video to drive a three dimensional textured face
model. While these methods have enjoyed recent popularity,
especially for speech and visemes, they lack any anatomi-
cal or physically based structure, limiting their potential for
accuracy and realism.

Even though [WF95] advocated the use of muscles rather
than surfaces for speech animation early on, physically
based simulation methods have not enjoyed popularity for
phoneme or viseme research (as pointed out e.g. in [REO1]).
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This could be due to the high computational cost asso-
ciated with the level of fidelity required to study speech.
Although there is precedent for estimating muscle con-
traction parameters from video [TW90, TW93] (see also
[EBDP96, EP97, MIT98]), [BOP98b, BOP98a] avoided the
internal anatomy altogether using only a surface based fi-
nite element model while studying lip motion. In fact, recent
work in this area includes [CLKO1, CKO1] which conclude
that it might be better to estimate linear combinations of
sculpted basis elements rather than muscle activations. How-
ever, [SNFO05] argued that the limiting factor for fidelity was
not the use of simulation per se, but rather the lack of real-
istic muscles with biomechanical nonlinearity and anatom-
ical accuracy. Furthermore, they argue that a person’s face
is driven by muscle activations, therefore an anatomically
faithful model with the control granularity of actual human
facial muscle exactly spans the space of facial expression.

Both image-based animation methods and data-driven
surface deformation techniques have traditionally been pre-
ferred over physics-based approaches for facial animation.
Both approaches operate directly on sample data without
requiring an intricate anatomical facial model or the over-
head of simulation for either analysis or synthesis. Yet, in-
teracting with the simulated character in ways that are not
spanned by the recorded training data is recognized as a task
that lies beyond the scope of either approach. Physics-based
approaches provide the unique ability to interact with the
character in any way that can be physically prescribed while
respecting the fundamental characteristics of a performance,
namely motion style, expression and verbal content.

Following the approach of [SNFO05] we build a high reso-
lution, anatomically and biomechanically accurate flesh and
muscle model of a subject’s face. Then we automatically
determine muscle activations based on three-dimensional
sparse motion capture marker data. In particular, we focus
on the capture of speech, constructing a phoneme database
parameterized in muscle activation space. Notably, each
phoneme is stored with temporal extent. We demonstrate
that physically based approaches can be used for speech
analysis and synthesis by creating animations of novel words
and phrases from text and audio input. Moreover, we capture
muscle activations representative of expression and show
that these can be mixed with the speech synthesis to indepen-

Figure 1: A synthesized utterance of the word “algorithm” using a physically-based facial muscle model

dently drive speech and emotion. Finally, we illustrate the
versatility of a physically driven three dimensional model
via interaction with foreign objects.

2. Previous Work

Early work on three dimensional facial animation in-
cludes [Par72,PB81, Wat87, MTPT88, KMMTT92] (see also
[EF78]). [VBMH*96] relate skin deformation of a physics
based model to oral tract deformation while [LMVB*97,
LM99] use a physics based model driven by muscle-control
signals acquired by AMG and compare surface deforma-
tion against the human subject. Based on scanned data,
[LTWO5] constructed an anatomically motivated, biome-
chanical facial model featuring a multilayer, deformable skin
model with embedded muscle actuators. [KGB98] used fi-
nite elements to predict emotions on a post-surgical face
(see also [KGC*96, RGTC98] for finite elements for fa-
cial surgery). [DMS98] used variational modeling and face
anthropometry techniques to construct smooth face mod-
els, [PHL*98, PSS99] animated faces based on photographs
and video, and [JTDP0O3] worked on automatic segmenta-
tion for blending. The face was also divided into subregions
for the facial animation in [ZLGSO03]. [BV99] proposed a
vector space representation of shapes and textures for an-
imation transfer [BBPVO03] and face exchange in images
[BSVS04]. [KHSO01] built a muscle based facial model and
considered morphing to other faces [KHYS02] and foren-
sic analysis [KHSO03]. [KPO5] used a parametric muscle
model with time varying visemes to extend the coarticu-
lation algorithm of [CM93]. [BB02] added expressiveness
to the MPEG-4 Facial Animation Parameters. A number
of authors have worked on facial motion transfer [NNOI,
PKC*03,NJ04, SP04]. [CXHO03] used tracking to drive ani-
mations from a motion capture database, [WHL™*04] tracked
facial motion with a multiresolution deformable mesh with
the aim of learning expression style, and [ZSCS04] proposed
a face inverse kinematics system.

3. Data Capture

3.1. Model Building

‘We constructed a high-resolution volumetric model of facial
flesh and musculature for both our analysis of speech sam-
ples and the synthesis of new utterances. First, we obtained
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Figure 2: Eight camera optical motion capture layout
(left), 250 facial marker set (right).

an MRI scan which provided an approximation of the tissue
extent and the shape of the interface between soft tissue and
bone. Then a life-mask cast of the subject was scanned at a
resolution of 100 microns, producing a 10 million triangle
model and a fully registered texture map. The detail from
this high resolution surface scan was integrated into our vol-
umetric flesh model. The facial flesh volume was discretized
into a 1,870,000 element tetrahedral mesh, with 1,080,000
elements in the frontal facial volume that was used to simu-
late deformation under action of the facial muscles. Due to
the limited resolution of the MRI scan, much of the internal
tissue structure was manually adjusted to create a muscle set
that conforms to the anatomical prototypes published in the
medical literature. Our model includes 39 of the muscles that
are predominantly involved in facial expressions and speech.
Muscles that have no effect or only a subtle effect on facial
motion were excluded, as their behavior would not be reli-
ably captured with our surface motion capture marker set.

3.2. Motion capture

We take a data-driven approach to speech synthesis con-
structing a database of prototypical subject-specific utter-
ances of speech primitives (sample phonemes within a con-
text of words or phrases). The motion component of these
utterances was recorded with a motion capture system con-
sisting of 8 cameras with 4MP CCD sensors. 250 thin cir-
cular patches of retroreflective material with a diameter of
3mm were placed on the subject’s face at an average distance
of 8-10mm apart. A small subset of markers were specifi-
cally placed on predominantly rigid parts of the head to cap-
ture the rigid head motion. The performance was sampled at
120Hz. See Figure 2.

3.3. Inverse activations

Following [SNF05] we model the isotropic response of pas-
sive fatty tissue by a hyperelastic Mooney-Rivlin constitu-
tive model for the deviatoric component, with an additional
volumetric pressure component for quasi-incompressibility.
The parameters of the Mooney-Rivlin model are spatially
adapted to the heterogeneity of the simulated tissues, yield-
ing different stiffness values for areas occupied by collagen,
cartilage, and tendinous structures. Areas of the flesh that are
occupied by contractile muscle tissue are further assigned
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Figure 3: Estimated muscle activations of expressions
Jfrom motion capture, left smile, right frown.

an anisotropic strain response corresponding to the passive
or active behavior of muscle tissue along the direction of its
fiber field. The inverse activation estimation framework em-
ploys the quasistatic simulation method of [TSIFOS]. This
formulation uses fast conjugate gradients solvers to evolve
constrained deformable objects to an equilibrium state, and
provides robust handling of mesh degeneracies such as ele-
ment inversion, as well as rigid body and self-collision han-
dling. We should point out that this quasistatic assumption
is preferred for the estimation process as it greatly simplifies
the inverse control problem. While it can also be used for the
forward simulation of slow speech, a fully dynamic simula-
tion method is superior for the simulation of faster speech
from muscle activation controls.

4. Phonemes and Visemes
4.1. A Muscle Activation Basis for Speech

The inverse activation framework described in section 3.3 al-
lows us to translate our database of motion captured speech
samples into temporal sequences of control parameters for
our deformable face model (i.e. muscle activations and kine-
matic configuration of the bones). We subsequently use these
controls as the parameterization of facial motion for analysis
and synthesis tasks.

A defining property of visual speech synthesis techniques
is the choice of the feature space used to describe facial mo-
tion. Common examples found in the literature (cited above)
include image-based descriptions and surface shape bases.
Our approach provides the versatility to edit the animated
performance affecting the emotion and expression of the
character, as well as allowing physical interaction of the face
with objects from the environment. In this context, the rele-
vant feature is not the appearance or the shape of the face per
se, but rather the action of speech articulation. Therefore, we
follow the formulation of [SNF05] using the activation sig-
nals that stimulate the facial muscles as our feature space, an
approach that was pioneered in [TW90, TW93].

Our approach is subject to a number of limitations. The
quality of our parameterization and the fidelity of the result-
ing simulations are only as good as the detail and accuracy of
our muscle-driven model as well as the physical consistency
of the simulation method used. This highlights the need for
detailed, nonlinear, volumetric finite element models of the
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Figure 4: Frames corresponding to estimated muscle acti-
vations of phonemes from motion capture. Top left - er, top
right - r, lower left - sh, and lower right - iy.

anatomical components of the face. Additionally, our adop-
tion of a quasistatic simulation scheme for analysis leads to
a deviation from the true dynamic behavior expected of a
physical system. However, for our training set of short words
spoken at a casual pace, inputting the estimated muscle ac-
tivation sequences into a forward quasistatic simulation pro-
duced a very close match to the original capture respecting
almost all nuances of individual utterances. This supports
our use of quasistatics for the estimation of muscle activa-
tions, although a full dynamic simulation would be superior
for synthesis (especially for faster speech).

4.2. Primitives of Speech Simulation (Physemes)

We collected a database of motion capture data for the
phoneme sets suggested by [Ann06] and [EPOO] where
phonemes are presented within the context of sample words.
We recorded 4-5 distinct captures of each phoneme set and
used the inverse activations estimation process to convert
each captured word into a short sequence of muscle activa-
tion signals and mandible articulation parameters. An exam-
ination of the signals corresponding to various phonemes re-
vealed several important patterns. First, we observed a high
degree of correlation between segments of words that con-
tained the same phoneme, as illustrated in Figure 5 for sam-
ples of the phonemes p and w (we adopt the phoneme codes
used in [BTC99]). The temporal extent of this correlation
varied with the particular phoneme being considered and
its phonetic context. Phonemes with matching context (the
phonemes immediately before and after the one in question)
tended to correlate over a much longer time segment. In ad-
dition, several phonemes (such as the consonants sh,v,z)
typically reached a steady state in activation space, sur-
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Figure 5: Comparison of the physeme samples in our
database associated with the phonemes “p” and “w”, il-
lustrating the waveforms of the major muscle activations
and kinematic parameters involved. Note that the samples
for each phoneme are highly correlated within the mus-
cle activation space showing the effectiveness of our basis.
The “p” phoneme is dynamic and exhibits three distinct
activation phases while the “w” phoneme has a uniform

activation pattern.

rounded by the transitions from the previous and to the next
phoneme. Other phonemes (such as the diphthongs ay,ey)
exhibited a characteristic dynamic pattern over their tempo-
ral extent, often marked by a distinctive transition. In Fig-
ure 5 we classify p as a dynamic phoneme (we can identify
3 distinct stages of mouth closure, lip retraction and mouth
opening) while the static w appears to achieve a steady state
in between transitions. We note that muscles in the oral re-
gion typically exhibited higher degree of correlation across
utterances of the same phoneme than peripheral muscles.

These observations support the hypothesis that time-
varying sequences of muscle activations capture a large
amount of information about phonemes and phoneme tran-
sitions. In particular, by recording the muscle activation sig-
nals over a time interval that extends beyond the duration
of each phoneme and into its neighboring ones we capture
the effect that the utterance of each phoneme has and re-
ceives from its context, formally known as coarticulation.
Therefore, we associate each of these extended intervals of
muscle activations and bone kinematics with its correspond-
ing phoneme and use them as the primitives of our physics-
based visual speech synthesis, labeling them as physemes (in
analogy to phonemes and visemes).

To create a database of physemes we use the audio track
to identify each phoneme, using the Festival Speech Syn-
thesis System [BTC99] to segment utterances into individ-
ual phrases and then into individual phonemes. The label-

(© The Eurographics Association 2006.



Sifakis et al. / Simulating Speech with a Physics-Based Facial Muscle Model

ings were not completely accurate and sometimes manual
annotation was also required. Once every word had been
partitioned into time segments corresponding to different
phonemes, physeme samples were collected by selecting
the estimated muscle activation signals corresponding to the
time range of each phoneme (see Figure 6) and padding the
signal on each side of the time segment with enough data
from its context in order to capture the coarticulatory effects.

5. Synthesis
5.1. Physeme-based Speech Synthesis

Our physeme database captures the motion signatures of
phonemes and the transitional effects between them in the
physically motivated space of muscle activation. We present
a first approach to using this physeme basis directly for syn-
thesis of visual speech. The input to our systems consists
of an audio recording along with a transcript of its ver-
bal content. We again use Festival [BTC99] to segment this
novel audio track into time intervals corresponding to dis-
tinct phonemes. The result is typically satisfactory for utter-
ances of individual words or slow speech. However, some-
times with longer and faster speech passages it was neces-
sary to manually adjust the phoneme annotation.

After we determine the constituent phonemes of the text to
be synthesized, we assemble a matching temporal arrange-
ment of physemes from our database. Each physeme con-
tains muscle activation signals that extend beyond the dura-
tion of its associated phoneme, namely it starts with a lead-
in from the previous phoneme, followed by the body corre-
sponding to its base phoneme and a lead-out from the fol-
lowing phoneme. We place physemes in arrangements with
their bodies contiguous and their lead-in and lead-out over-
lapping into the body of the adjacent physeme (see Figure 7).
Silent intervals are modeled with a special arbitrary length
“pause” physeme, with muscle activations corresponding to
the neutral pose of the face. In general, the length of each
phoneme in an audio recording will not match the length of
the corresponding physeme in our database, so the muscle
activation signal of the physeme is time-scaled to the appro-
priate length. A single, uniform time scaling is applied to the
body as well as the lead-in/out of the physeme.

For each physeme inserted in an arrangement we use a
blending curve that yields constant weights equal to unity
throughout the body of the physeme and decays to zero at
the outer endpoints of the lead-in and lead-out following a
C' continuous sigmoid curve. We extract a single muscle
activation signal from the complete physeme arrangement
by performing weighted averaging of the signals overlapping
at any instance in time using their corresponding blending
weights, as illustrated in Figure 7.

Among the kinematic parameters that are obtained
through the inverse activation estimation process, the param-
eters that define the overall rigid body motion of the head (or
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Figure 6: Segmentation of a time sequence of nine selected
muscle activations for the captured word “cheese” into
constituent physemes. For each physeme we store the time-
varying signals of the phoneme segment and its context
in the database. The rendered frames correspond to point
samples of the physemes within each of the phonemes.

the frame of reference of the cranium) receive special han-
dling. Interpolating between different positions and orienta-
tions in such short time intervals as those corresponding to
phoneme lengths would most likely incur sudden jumps and
violent accelerations. Thus, instead of interpolating between
frames of reference, we use the estimated rigid body mo-
tion for each individual physeme and use it to approximate
the linear and angular velocity of the head at each frame.
When blending phonemes we then proceed to blend linear
and angular velocities instead of positions and orientations.
The rigid body configuration is then obtained by integrating
the linear and angular velocities forward in time. The result-
ing signals of muscle activations and rigid bone kinematics
can be fed into a forward quasistatic or dynamic simulator
to produce the final physically driven speech simulation.

5.2. Sequence Generation

We employ a semi-automatic interface for the creation of
physeme-based simulations of speech including tools for the
creation and refinement of physeme arrangements, preview
of an approximate speech synthesis and final physics-based
finite element simulation. Given the existence of tools such
as Festival that simplify the segmentation of an audio speech
signal into its constituent phonemes, we focus on the task
of compiling a physeme arrangement to match a given, la-
beled phoneme sequence. The low dimensionality of our fea-
ture space (39 muscle activations and 3 kinematic parame-
ters, a few tens of phonemes per sentence) makes optimiza-
tion algorithms such as stochastic optimization attractive, i.e.
since we avoid the overhead typically associated with them
in higher dimensional spaces.

We adopted the constraints that the labels of the physemes
have to match the labels of the phonemes that occupy the
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Figure 7: Arrangement of the word “grind” synthesized from the physemes in our database. The solid vertical lines represent
physeme boundaries determined from the input audio signal while the dashed lines represent the blending region between
physemes. The thick blue curves are the individual physeme samples used to build the arrangement while the thin red curve

represents the blended signal.

same time range in the audio recording, and we clamped the
lead-in and lead-out of each physeme to 20% of the length
of the body of the neighboring phoneme it overlaps with.
Under these constraints, our free parameters are the choice
of which of the 5-30 physemes from our database for each
phoneme should be used to fill a particular time interval. We
formulated a criterion for the quality of a particular phoneme
arrangement and solved it using simulated annealing, using
parameters that yield the global minimum with very high
confidence. We obtain our quality criterion by computing
the magnitude of the discrepancy between the muscle ac-
tivation vectors for all frames where physeme extents would
overlap and integrating over time. In order to prevent weak
muscles or muscles that have little direct effect in the articu-
lation of speech to dictate the quality of an arrangement, we
scale the activation a; value by the average magnitude of the
quasistatic shape Jacobian 0X/da;, computed over the entire
range of motion captured visemes (as a by-product of the in-
verse activation estimation process). This biases the quality
criterion towards accounting for muscles whose activation
tends to have a more substantial effect on the shape of the
face.

Our optimization process provided convincing physeme
arrangements for simple examples (such as single, slowly
spoken words) requiring little to no manual intervention.
However, with more complicated examples or faster speech
this result often required manual adjustment, such as fine-
tuning the length of the lead-in/out segments or the pre-
cise placement of phoneme boundaries. We created a graph-

ical interface that provided us with the functionality to al-
ter all these parameters, as well as the individual choice of
physemes used at each moment in time. As a by-product
of our inverse estimation process, we possess a quasistatic
face shape approximation for each frame in our captured
training set. By blending these face shapes with the same
weights used for physeme blending we obtain a fast pre-
view for our edits without the need for simulation, which
is run only when our adjustments are complete. On average,
editing a medium-sized sentence would typically entail 2-3
hours of manual processing. We note that quasistatic simu-
lation contributed substantially to that cost, since the lack of
damping and inertia made the final result more sensitive to
the muscle activation input signal than it would be with a full
dynamic simulation.

6. Speech and Expression

The versatility of a physically-based muscle driven face
model for speech synthesis is highlighted by the ability to
augment the simulation with elements that are secondary
to the process of speech articulation. Facial expression and
emotion are characteristic examples of such elements. Al-
though there exists a correlation between the emotional ap-
pearance and the verbal content of human speech, a human
speaker may adjust his facial expression independent of the
words spoken. We simulate this process by motion captur-
ing facial expressions and using our inverse activation pro-
cess to convert these expressions into characteristic muscle
contractions. Subsequently, we blend these muscle activa-
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Figure 8: The middle row shows a synthesized speech sequence of the word “seeping” with neutral expression. The other
rows show the same activation sequence blended with a smile (top row) and frown (bottom row).

tion values into our synthesized physeme sequences and use
physics-based simulation to obtain the final animation.

As illustrated in Figure 8, the integration of expressions
such as a frown or a smile can be performed in a very natural
manner, through simulation, without compromising either
the articulatory content or the emotional response elicited
by the expression that was blended in. Such an augmenta-
tion is straightforward and requires no manual adjustment
of the physeme arrangement. It should be emphasized that
it is much more challenging and labor intensive to obtain
such a result, in regard to both speech and expression, with
a technique based on blending images or face shapes. The
nonlocal effects of pronounced facial expressions, in con-
junction with anatomical phenomena that arise from these
expressions (such as bulging of skin, deepening of facial
furrows, or changes in the contact pattern of the lips) be-
come particularly difficult to capture convincingly without a
physically-based approach.

7. Speech and Physics

Beyond the task of enriching the facial motion with an ex-
pression, the real power of physics-based approaches is re-
vealed when the face is required to interact with the outside
world. Physical simulation of a full volumetric facial muscu-
lature model allows us to produce effects that are difficult or
impossible using image-based or data-driven surface defor-
mation techniques. By keeping the muscle activation con-
trols fixed and modifying the simulation environment, we
can effortlessly produce a new facial deformation. In par-
ticular, once a speech database is created, reproducing such
effects does not require additional motion capture data, anal-
ysis or modification of our synthesized physeme sequences.

(© The Eurographics Association 2006.

For example, we depict our virtual character speaking with a
lollipop and candycane in his mouth in Figure 9, where the
muscle activation signals were synthesized without regard to
the object interaction.

8. Discussion

Using our quasistatic estimation framework, we processed
approximately 10 minutes of speech at 120Hz in an aver-
age of 7 minutes per motion capture frame (including full
analysis with full rigid body and self-collision handling) on
a Xeon 3.8 Ghz CPU. The full processing of approximately
70,000 frames required the equivalent of a CPU year on clus-
tered computer hardware. Although seemingly high in com-
putational cost, this once-only process requires no human
supervision and all the resulting muscle activation signals
were of adequate quality for use in our database. Notably,
our simulation model contained 1080K simulation elements,
which is at least 3 times larger than typical high resolution fi-
nite element simulations in the computer graphics literature.
Therefore, we expect our model to age much slower than
the advance of computer hardware, making the computation
affordable.

Once the facial model has been created and the physeme
database has been assembled from the motion captured per-
formance, the main labor-intensive effort is the manual ad-
justment of the physeme sequences to fine-tune the syn-
thesized speech result. Currently at a cost of a few hours
per sentence, the bulk of this effort is attributed to correct-
ing mistakes of the speech analysis software (the Festival
system) and adjustment of the transition intervals between
successive phonemes. The latter would be substantially eas-
ier if a full dynamic framework was employed for the final
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Figure 9: The middle row shows a selection from “we can also model” synthesized with our method. In the top and the
bottom rows, we augment the simulation with interacting physical objects while using the same muscle activation controls.

forward simulation, as the physics of facial motion would
handle physeme transitions in a smooth way alleviating is-
sues with blending intervals. While this editing cost might
seem high compared to data-driven methods, especially if
one is only concerned with casual speech, it becomes much
more competitive when one requires the added versatility of
the face interacting with its environment. Our method can
achieve physically based environmental interactions with al-
most no additional cost, whereas the cost increases substan-
tially for data-driven approaches even though the quality in-
curs a significant decrease.

9. Conclusions and Future Work

We presented a physics-based approach to visual speech syn-
thesis using an anatomically accurate, muscle actuated fi-
nite element model of the human face. We collected mo-
tion capture data for the utterances of words in a training
set and converted them into the time varying muscle ac-
tivation signals that give rise to the captured face motion.
We segmented these muscle activation signals into time seg-
ments corresponding to different phonemes and assembled
them into a database of physemes. We create sequences of
physemes with smooth transitions between them to match
the phonemes of audio recordings of new speech, and use
the resulting muscle activation signals to drive a finite ele-
ment simulation of facial motion. The animation is readily
enriched by blending in expressive emotions or by introduc-
ing external objects that interact with the talking face.

Our adoption of a quasistatic simulation scheme was mo-
tivated by the tractability of the muscle activation estima-
tion framework of [SNF05]. When our estimated activations
were used in a quasistatic forward simulation, the results
compared well to the original video visually validating our
approach to estimation. However, for the reanimation of a
novel synthesized physeme sequence, quasistatic simulation

was only satisfactory for sequences of slow speech, where
ballistic motion and pronounced inertial effects are not sig-
nificant. When used with muscle activation signals created
for faster speech, quasistatic simulation gave rise to rather
abrupt and underdamped motion that lacked realism. Inertial
effects have a profound effect on the motion of a real human
face under such conditions, smoothing out phoneme transi-
tions and smearing away the dynamics of individual utter-
ances. We believe that a full dynamic simulation is the ob-
vious choice for animations of such synthesized sequences
of fast speech and discourage the use of quasistatics for for-
ward simulation whenever possible. The practice of using
quasistatics for the inverse problem and full dynamics for
forward simulation is also a well established practice in the
field of biomechanics, where it is well understood that even
in cases where the estimated actuations are not smooth or
even discontinuous, the simulated deformation using a full
dynamic scheme is smooth and realistic due to the progres-
sive fashion in which muscle activations translate to tissue
deformation.

Our key objective for our future work is the illustration
that a fully dynamic simulation of the synthesized muscle
activation signals successfully treats demanding, fast-paced
speech passages. Increased realism could be obtained by
improving eyelid, eyebrow and forehead motion as well as
modeling the effect of airflow in the oral cavity accommo-
dating effects such as cheek puffing and improving the ap-
pearance of closed-mouth phonemes (such as p and b). Im-
proved training sets will enable us to better capture the dy-
namics of speech in different contexts than that of short,
slowly spoken phrases. The current work constitutes only
a first step in using the muscle activation basis for speech
analysis, and this compact, complete and physically moti-
vated description provides the potential to improve several
analysis techniques such as Principal Component Analysis

(© The Eurographics Association 2006.
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by allowing them to operate in a space that is much more
tightly bound to the physical process of speech articulation
rather than in a space of facial appearances or skin shapes.
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