
Coupling Water and Smoke to Thin Deformable and Rigid Shells

Eran Guendelman∗

Stanford University
Industrial Light + Magic

Andrew Selle∗

Stanford University
Intel Corporation

Frank Losasso∗

Stanford University
Industrial Light + Magic

Ronald Fedkiw†

Stanford University
Industrial Light + Magic

Figure 1: Water and cloth interacting with full two way coupling (256×256×192 effective resolution octree, 30K triangles in the cloth).

Abstract

We present a novel method for solid/fluid coupling that can treat
infinitesimally thin solids modeled by a lower dimensional triangu-
lated surface. Since classical solid/fluid coupling algorithms ras-
terize the solid body onto the fluid grid, an entirely new approach
is required to treat thin objects that do not contain an interior re-
gion. Robust ray casting is used to augment a number of interpo-
lation, finite difference and rendering techniques so that fluid does
not leak through the triangulated surface. Moreover, we propose
a technique for properly enforcing incompressibility so that fluid
does not incorrectly compress (and appear to lose mass) near the
triangulated surface. This allows for the robust interaction of cloth
and shells with thin sheets of water. The proposed method works for
both rigid body shells and for deformable manifolds such as cloth,
and we present a two way coupling technique that allows the fluid’s
pressure to affect the solid. Examples illustrate that our method per-
forms well, especially in the difficult case of water and cloth where
it produces visually rich interactions between the particle level set
method for treating the water/air interface and our newly proposed
method for treating the solid/fluid interface. We have implemented
the method on both uniform and adaptive octree grids.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;

Keywords: water, smoke, cloth, shells, rigid bodies

1 Introduction

Water and smoke both possess a large number of degrees of free-
dom and thus produce visually rich motion especially when inter-

∗e-mail:{erang, aselle, losasso}@stanford.edu
†e-mail: fedkiw@cs.stanford.edu

acting with solid objects. This makes these media both interesting
and popular from a storytelling or entertainment perspective. It can
be rather costly, uncomfortable or impossible to capture the desired
fluid interaction with actors on film, and thus simulation techniques
for these phenomena have become popular in recent years. Often,
two way coupling between fluids and solids is not desirable, since
the animator does not want the fluid changing or resisting their artis-
tic development. On the other hand, animators have difficulty when
the solid has many degrees of freedom, e.g. cloth, and have resorted
to simulation to obtain the desired effects. Moreover, thin and light
weight objects need to feel the effect of the fluid, especially heavy
fluids such as water, in order to make their animation plausible.
Thus, the two way interaction of thin deformable high degree of
freedom solids and heavy liquids with interfaces is highly desirable.

There are various computational methods for simulating fluids,
solids and their coupling. Typically fluids such as water (e.g. [Fos-
ter and Fedkiw 2001; Enright et al. 2002]) are simulated using
Eulerian numerical methods with a fixed mesh that material moves
through, whereas solids such as cloth (e.g. [Bridson et al. 2002;
Choi and Ko 2002; Baraff et al. 2003]) are simulated with a La-
grangian numerical method where the mesh moves with the mater-
ial. At least as far back as [Noh 1964] (see also [Benson 1992] for
a review), two way coupling has been carried out with the fluid’s
pressure providing forces to the solid, and the solid’s velocity pro-
viding boundary conditions for the fluid. Although this often used
method works well for problems where the solid object is thick
enough to be resolved by the fluid’s grid, see e.g. [Yngve et al.
2000], it suffers from significant aliasing errors for thin objects.
This is exacerbated by the infinitesimally thin objects made up of
triangles that we consider here, and recent methods (e.g. [Carlson
et al. 2004]) cannot be applied to these types of problems.

Very little research has been carried out on algorithms that cou-
ple infinitesimally thin Lagrangian-based solids to Eulerian-based
fluids, and few computational strategies exist. Moreover, they are
mostly focused on single phase fluids, whereas our main interest is
fluids with interfaces such as between water and air. Probably the
most common strategy forsingle phasefluids is based on the im-
mersed boundary method of [Peskin 1972; Peskin 2002], and [Zhu
and Peskin 2002] used this method to calculate the motion of a thin
flexible filament (a curve) in two spatial dimensions. A thin solid
object feels and reacts to fluid forces as molecules collide against
it, and the net force on the thin solid comes directly from the pres-

sure differential across it. The immersed boundary method cannot
handle this pressure jump and instead forces the pressure to be con-
tinuous across the thin solid, and thus (nonexistent) pressure jumps
cannot be used to apply forces to the solid. Instead, they simply set
the solid velocity to be equal to the velocity of the surrounding fluid,
and use ad hoc methods to provide resistance to the fluid motion.
For example, [Zhu and Peskin 2002] smeared out the filament over
a number of grid cells converting it into a higher density fluid, and
added artificial forces to the right hand side of the Navier-Stokes
equations. Similar to penalty methods for rigid body contact con-
straints, these forces can only coerce a desired fluid reaction and
often require small time steps for stability and accuracy.

[Kang et al. 2000] pointed out that smeared out pressures profiles
(such as those used in the immersed boundary method) can cause
parasitic currents when used to make the velocity divergence free
(see also [Ǵenevaux et al. 2003]). A key to our method is the re-
placement of penalty forces with analytic constraints on the fluid
velocity forcing it to flow as dictated by the velocity of the solid.
Heuristically similar to the analytic methods of [Baraff 1993] for
solving contact phenomena in rigid bodies, we replace the stiff in-
accurate penalty forces of the immersed boundary method with a
robust constraint that requires the solution of a linear system of
equations greatly reducing the errors. Conveniently, we are already
solving a linear system for the pressure, and it is readily modified
to include the no flow constraint exactly as opposed to the only
approximate enforcement via penalty forces. This is essentially a
sharp interface approach similar in spirit to the immersed interface
method (see e.g. [Li and Lai 2001]). However, we note that neither
the immersed interface method nor the immersed boundary method
has been used to solve solid/fluid coupling problems in the presence
of liquid interfaces or thin films as we do here.

2 Previous Work

Simulation of the incompressible three dimensional Navier-Stokes
equations was popularized by [Foster and Metaxas 1997b] and later
made more efficient by [Stam 1999] via the use of semi-Lagrangian
advection techniques. [Fedkiw et al. 2001] increased the small scale
details with the use of a vorticity confinement term. These equa-
tions have also been augmented to model fire [Lamorlette and Fos-
ter 2002; Nguyen et al. 2002], particle explosions [Feldman et al.
2003], and even the interior of deformable objects [Nixon and Lobb
2002]. [Rasmussen et al. 2003] combined interpolation with two
dimensional simulations to create three dimensional nuclear explo-
sions, [Treuille et al. 2003; Fattal and Lischinski 2004] proposed
methods for control, and [Stam 2003] solved these equations on
surfaces creating beautiful imagery.

[Kass and Miller 1990] solved a linearized form of the three dimen-
sional Navier-Stokes equations for water that interacted with a vari-
able height terrain. [Chen and Lobo 1994] solved the two dimen-
sional Navier-Stokes equations using the pressure to define a height
field. The full three dimensional Navier-Stokes equations were
solved in [Foster and Metaxas 1996; Foster and Metaxas 1997a]
using a particle in cell approach. A hybrid particle and implicit
surface approach to simulating water was proposed in [Foster and
Fedkiw 2001], which led to the particle level set method of [En-
right et al. 2002]. Additional work includes the modeling of sur-
face tension [Enright et al. 2003; Hong and Kim 2003; Cohen and
Molemaker 2004; Losasso et al. 2004], viscoelastic fluids [Gok-
tekin et al. 2004], control [McNamara et al. 2004; Mihalef et al.
2004], and octree data structures [Losasso et al. 2004]. Level set
methods for simulating liquids have enjoyed popularity in recent
films including “Terminator 3” [Rasmussen et al. 2004], “Pirates of

Figure 2: Two way coupled cloth and smoke (210×140×140 uni-
form grid, 30K triangles in the cloth).

the Caribbean” [Rasmussen et al. 2004], “The Day After Tomor-
row” [Iversen and Sakaguchi 2004], “The Cat in the Hat” [Cohen
and Molemaker 2004] and “Scooby Doo 2” [Wiebe and Houston
2004; Houston et al. 2004].

Various authors have used simplified fluid dynamics to blow around
solid objects, e.g. [Wejchert and Haumann 1991; Wei et al. 2003],
and many have used simplified wind models to simulate flags flap-
ping in the wind, e.g. [Ling et al. 1996]. [Hadap and Magnenat-
Thalmann 2001] used gridless SPH techniques to couple air flows
to hair simulation, but since hair is one-dimensional it does not re-
strict or contain the fluid as cloth does. SPH models for water were
considered in [Premoze et al. 2003; Muller et al. 2003], and meth-
ods of this type were coupled to deformable solids in [Muller et al.
2004] using virtual boundary particles. In fact, [Kondoh et al. 2004]
coupled an SPH model for water to thin deformable cloth pointing
out that particle based fluid methods can be coupled without leak-
ing using robust point face collisions, although their method will
leak if the time step is not chosen sufficiently (sometimes severely)
small. Of course, this can be alleviated with a more robust point
face collision method as in [Bridson et al. 2002]. The drawback of
using SPH methods is that it is difficult to obtain the smooth liquid
surfaces characteristic of level set methods, and recently [Carlson
et al. 2004] proposed a method for the two way coupling of rigid
bodies to level set based fluid simulations. They first rasterize the
rigid body velocity onto the grid, and then solve the fluid equa-
tions everywhere treating the rasterized rigid body velocities as if
they were fluid (this was also done in [Foster and Fedkiw 2001] for
modeling slip boundary conditions). Then they modify the veloci-
ties in the rigid body region to account for collisions and buoyancy
before averaging them to a valid rigid body velocity with a constant
translational and rotational component. The authors point out that
their method leaks if the objects are too thin (whereas we consider
arbitrarily thin objects), and deformable materials were not consid-
ered.

We provide examples of water and smoke interacting with thin rigid
bodies and cloth. The novelty of the method is in the treatment of
the fluid and the interaction between the fluid and the solid, not
in the simulation of the solids themselves. Thus, we use the ba-
sic cloth model from [Bridson et al. 2003] including their bending
formulation (see also [Grinspun et al. 2003]), and the self-collision
algorithm of [Bridson et al. 2002]. We note that there are many
other interesting strategies for cloth including the dynamics model
proposed in [Baraff and Witkin 1998], the bending model proposed
in [Choi and Ko 2002], and the self-interference untangling strategy

reference point

visible point

occluded point

inside point

ε /2ε

Figure 3: We intersect with a triangle wedge that is formed by ex-
tending the edges and face in normal directions byε/2 (left). Given
a reference point, another point can be classified asvisible, inside
an object, oroccludedby the result of a ray cast (right).

of [Baraff et al. 2003]. We use a basic method for rigid body sim-
ulation, which doesn’t need to be any more sophisticated than that
in [Hahn 1988; Moore and Wilhelms 1988] for our purposes. The
interested reader is also referred to [Baraff 1994; Guendelman et al.
2003] and the references therein for contact and collision handling
techniques.

3 Robust One-Sided Interpolation of Data

Our goal is to completely prevent the leaking of smoke and wa-
ter across thin rigid and deformable solids represented by moving
triangles. To do this, we use visibility and occlusion to determine
which point combinations can be used to produce interpolations,
derivatives, etc. of variables such asφ , ρ andu. This is accom-
plished via robust ray casting against thickened triangle wedges as
in [Bridson et al. 2002], see Figure 3 (left). From the perspective
of any reference point in space, the world is broken up into three
regions: visible points, occludedpoints, and pointsinside some
triangle wedge of the object. This partitioning is accomplished
by casting a ray from the reference point to the point in question
as shown in Figure 3 (right). The triangle wedges guarantee that
only visible points are labeledvisible, but may incorrectly mislabel
some visible points as beinginsidethe object or evenoccludednear
boundaries leading to a fuzzy interpretation of the object that is ro-
bust against roundoff errors. Given a reference point, if one rules
out all occludedand inside points when constructing stencils for
interpolation, differentiation, etc. at this reference point, then valid
one sided approximations are guaranteed.

When a thin solid moves, a point originally on one side of the ob-
ject surface may be swept over by the surface and end up on the
other side of it. In this case, the values contained by that point are
invalidated for all subsequent interpolation, since it represents in-
formation from the other side of the object. Detecting such points
is crucial to preventing leaks and is accomplished on a per-triangle
basis. Each time step, we move the triangle nodes with linear tra-
jectories, and consider a pointinvalid if it intersects the triangle
itself (at the center of the wedge) during the time step. Checking
this amounts to solving a cubic equation as in [Bridson et al. 2002].
For robustness, we additionally consider a pointinvalid if it is ei-
ther inside the triangle wedge at the beginning or at the end of a
time step. Any point that does not start or stopinside a triangle
wedge will robustly register a collision with an interior triangle if
it crosses from one side of the object to the other. In the case of
octrees, refinement leads to new point values that are also marked
asinvalid. Coarsening only involves the removal of nodes, and thus
nothing special need be done.

We provide valid values forinvalid nodes using a Gauss-Jacobi iter-
ative scheme to propagate information. Each iteration, everyinvalid
node is assigned the average of its validvisible one ring neighbor

values and markedvalid. This technique of averaging uncovered
points is similar to the blending methods used by others, see e.g.
[Benson 1992]. Complicated object geometry or folding may pro-
duce nodes that are stillinvalid after all iterations are complete.
These nodes have novalid visible neighbors, and thus we again
iterate in a Gauss-Jacobi fashion except this time using specially
chosen values when visibility rays intersect an object. For exam-
ple, we use the object velocity, a zero density, an ambient or object
temperature, the positive distance to the object, etc.

A standard axis-aligned box hierarchy is used for the triangulated
surface accelerating intersection tests, etc. Moreover, for each trian-
gle, a slightly enlarged bounding box is used to label all the voxels
from the fluid simulation that are in close proximity to the surface
thus possibly requiring special treatment.

4 Fluid Simulation

As proposed in [Fedkiw et al. 2001], we ignore viscous ef-
fects and use the inviscid form of the Navier-Stokes equations,

ut +u ·∇u = −∇p+ f, (1)

∇ ·u = 0, (2)

whereu = (u,v,w) is the velocity field,f accounts for the external
forces, and the density of the mixture has been absorbed into the
pressurep. Although we have implemented the algorithm on both
uniform and octree grids, the exposition is primarily geared towards
uniform grids with octree grids discussed only when the extension
is not obvious. Otherwise, we refer the reader to [Losasso et al.
2004] for more details. In addition,we have devised a novel node
based fluid solverwith the velocity, temperature, density and level
set values all defined on the nodes of both the uniform and octree
grid. See section 4.2.

4.1 Computing the Intermediate Velocity

We trace a semi-Lagrangian ray fromx to x−∆tu, for each nodal
velocity, intersecting it with a triangle wedge that is double the
usual size (i.e. usingε ′ = 2ε in Figure 3 (left)). This guarantees
that the base interpolation point isvisible to the point we are up-
dating, and that the subsequent 8 rays we send out from this base
interpolation point can accurately predict visibility (through a 2 ray
path) for the interpolation stencil. If any of these 8 secondary rays
intersect the object, we use the local object velocity for that term
in the trilinear interpolation formula. After computing the interme-
diate velocity field, the object is moved to its new location and we
label all nodes colliding with the moving object asinvalid. Finally,
these nodes are givenvalid values as described in section 3.

For water, gravity is simply added to each nodal velocity in the
usual manner. For smoke, we add source terms that depend on the
smoke’s densityρ and the fluid’s temperatureT, i.e. f = −αρz+
β (T −Ta)z wherez is the upward direction,α andβ are tunable
parameters, andTa is the ambient temperature. The smoke’s density
and the fluid’s temperature are treated (advection, visibility, cross
over, invalid, etc.) together with the velocity as explained above, us-
ing a zero density andTa for visibility rays that intersect the object.

To compute the vorticity confinement force at each grid node, we
calculate the curl of the velocity fieldω = ∇×u using the six ad-
jacent nodal velocity vectors with each replaced by the object ve-
locity if it is not visible. Then we compute the vorticity magni-
tude. Its gradients,∇|ω|, are computed using central differencing

Figure 4: A thin rigid kinematically controlled cup is filled with water, and then poured out (160×192×160 effective resolution octree).

of the six neighboring values of the vorticity with each replaced by
the vorticity of the center node if it is notvisible. These gradients
are normalized to obtain the vorticity location vectorsN which are
then used to compute the source term due to vorticity at the node,
f = ε̂∆x(N×ω).

4.2 Node Based Fluid Solver

We solve for the pressure on the standard MAC grid. This could be
done by averaging the nodal velocities to the faces, projecting the
face velocities to be divergence free, and then averaging the result
back to the nodes. However, these extra averaging steps deterio-
rated the quality of our results so we designed an alternate method.
We start by defining the initial velocity field on the faces instead
of the nodes. Then at each step, we first average the face values
to the nodes before computing the intermediate velocityu∗ on the
nodes as described above. Then, instead of averaging this inter-
mediate velocity back to the faces, we compute a scaled force on
each node as4u = u∗−un and average this scaled force back to
the faces instead. The scaled force is then used to increment the
persistent face velocities to obtain the intermediate velocity on the
faces. This alternative method smears out the incremental forces in-
stead of the persistent velocities, and thus leads to excellent results
competitive with the standard MAC scheme. To understand the dif-
ference, consider that averaging velocities back and forth causes
dissipation independent of4t and even leads to dissipation when
4t = 0. On the other hand, the smearing of our forces is scaled by
4t and vanishes as4t approaches 0. Overall, this method allows
us to combine a simple and efficient node based scheme for com-
puting the intermediate velocity with a robust face based scheme
for making the intermediate velocity divergence free.

This mixed node/face based scheme can be used to accelerate and
simplify any Navier-Stokes solver, but a few modifications are re-
quired in our case. First, when averaging from the faces to the
nodes, rays are traced to the appropriate four faces and allvisible
faces are used to compute an average velocity on the node. If no
faces arevisible, we average the local object velocity from the lo-
cations where the visibility rays intersected the object. Then when
averaging the scaled forces back to the faces, the appropriate rays
are traced and allvisible nodes are used to compute the average
scaled force on a face. If no nodes arevisible, we replace the face
velocity with the average obtained using the object velocities deter-
mined by the visibility rays, i.e. scaled forces are not used in this
case.

4.3 Solving for the Pressure

The intermediate face velocity is made divergence free via

u = u∗−∆t∇p. (3)

where the cell centered pressure values are calculated by solving a
Poisson equation of the form

∇2p = ∇ ·u∗/∆t. (4)

This equation is solved by assembling a symmetric system of linear
equations, one for each MAC grid cell (that contains fluid) with
the pressure defined at the cell center. In the case of water, we
set Dirichletp = 1 boundary conditions in air cells. A Neumann
boundary condition implies that the pressure derivative at a cell face
is zero, and thus the intermediate velocity is not modified as can be
seen in equation 3.

We found that thin films of water can quickly compress and lose
mass against thin solid objects if one is not careful in how the
boundary conditions are handled. In fact, correctly handling the
boundary conditions is of upmost importance for mass conserva-
tion in general, as discrepancies between the fluid and object ve-
locity cause fluid to flow into or out of an object losing or gaining
mass respectively. Our method for handling this is one of the key
observations and contributions of this paper. First, we note that the
velocity we compute for the fluid during the divergence free pro-
jection will be used in thenexttime step, and thus we need to make
this commensurate with what the solid will do in thenexttime step.
In order to do this, we calculate the size of the next fluid time step,
evolve the solid object forward in time by the size of this time step
allowing the solid to take as many substeps as it needs to remain

p(i,j)

Figure 5: Neumann boundary conditions (denoted in bold red) are
enforced at a cell face if the ray between two adjacent cell centers
(where pressures are defined) intersects an object.

Figure 6: A rigid kinematically controlled “Buddha cup” dipped, filled and poured out (1923 effective resolution octree, 60K triangles in the
rigid cup).

accurate and stable, calculate aneffective velocityfor each node in
the solid by dividing its positional change by the size of the next
fluid time step, and finally rewind the solid to its current position
at the end of the current fluid time step. Now theeffective velocity
represents exactly what the solid will do in the next time step, and
we use Neumann boundary conditions to force the fluid to move in
exactly this manner allowing for excellent resolution of thin films
of water colliding against cloth and thin shells. We cast rays from
a cell center to the six neighboring cell centers to see if an object
cuts through the line segment connecting the pressures as shown
in Figure 5. And if so, we set a Neumann boundary condition at
the cell face and set the constrained velocity there equal to the ap-
propriate component of theeffective velocityof the object. Then
the divergence is computed in the standard fashion, equation 4 is
solved, and the results are used in equation 3.

A rather common difficulty with simulating highly deformable thin
objects such as cloth in a fluid flow is that the cloth folds over
on itself and pockets of fluid get separated from the flow. These
are simple to identify by performing a flood fill algorithm over the
fluid cell centers using the Neumann and Dirichlet conditions as
the fill boundaries. If any region is surrounded entirely by Neu-
mann boundary conditions, then the coefficient matrix assembled
using equation 4 has a null space corresponding to the vector of all
1’s and is not invertible. However, there is a version of the con-
jugate gradient algorithm that can be applied to this matrix, if we
first enforce the compatibility condition [Peyret and Taylor 1983].
This is enforced independently in each region that has a null space
using the area and velocity of the faces on the boundary to calculate
the net flow per unit area into or out of the region. Then for each
boundary face, we use this and the face area to obtain new tempo-
rary velocities that enforce no net flow across the region boundary.
Finally, we solve for the pressure and make this region divergence
free.

4.4 Water

We simulate water using the particle level set method of [Enright
et al. 2002] withφ ≤ 0 denoting water andφ > 0 denoting air.
Since we only solve for velocity values in the water, each time step
we extrapolate the nodal velocities across the interface into a 3-5
grid cell band to obtain velocity boundary conditions. To do this,
we first order all the grid cells in the band based on their values of
φ , noting that this ordering is only valid after reinitializingφ to be

a signed distance function (see section 4.4.1). Then we solve the
vector equation∇φ ·∇u = 0 for the nodes inφ increasing order. To
prevent velocities from leaking across objects, we rule out neigh-
bor values that are notvisible. It is possible that some points have
novisibleneighbors, and we temporarily label these pointsinvalid.
After extrapolation is complete, allinvalid points are givenvalid
values as explained in section 3.

4.4.1 Level Set Method

[Enright et al. 2005] showed that the particle level set method relies
primarily on the particles for accuracy whereas the role of the level
set is to provide connectivity and smoothness. Thus, they showed
that high order accurate level set advection could be replaced with
a semi-Lagrangian characteristic based scheme without adversely
affecting the accuracy. The level set is defined at the grid nodes,
and thus we trace the same semi-Lagrangian rays as for velocity
advection. When gathering the 8 values for trilinear interpolation,
we replace nodes that are notvisible with values averaged from a
subset of the other 7 grid nodes of the cell whenever possible. Each
point that needs to be redefined first looks to see if any of its one
ring connected neighbors (in that 8 grid node cell) arevisibleto the
base interpolation point. If so, they are averaged to obtain a new
value for the node in question. Otherwise, we check and average
the three 2 ring neighbors, or if that fails we consider the single
3 ring neighbor. If the process fails, there are novisible nodes in
the cell and the point in question cannot be updated. We mark this
node’sφ valueinvalid and fix it in a postprocess (see section 3).

The level set is maintained to be a signed distance function using
the fast marching method (see e.g. [Osher and Fedkiw 2002]). Typ-
ically, the nodes adjacent to the water interface are found by check-
ing for sign changes between neighbors in the Cartesian grid direc-
tions (or along edges in the octree grid). We add to this list any
node withφ ≤ 0 that has a neighbor that is notvisible, and subtract
from this list any node withφ > 0 that does not contain avisible
neighbor withφ ≤ 0. These last two adjustments ensure that an
interface exists up against the solid object, and that water does not
have influence across the thin triangulated surface. Typically, each
node in this list is given an initialφ value by considering how far
it is from the interface in each of the Cartesian grid directions that
have a sign change. However, if the current node hasφ > 0, we ig-
nore directions where the neighbor is notvisible. And if φ ≤ 0, we
use the minimum between the distance to the solid and|φ | in direc-

Figure 7: A full dynamic simulation of a rigid body shell two way coupled with water. The boat is heavier than the water, but retains buoyancy
due to Archimedes’ principle (effectively replacing displaced water with the air in its hull). Filling its hull with water causes it to sink, until
it dynamically collides with the ground. (148×148×111 uniform grid, 2.5K triangles in the dynamically simulated rigid boat)

tions that are notvisible. This last adjustment prevents water from
incorrectly sticking to objects. After initialization, we employ the
fast marching method in the usual fashion ruling out neighbors that
are notvisiblewhen updating a given point (similar to extrapolation
of velocity values).

4.4.2 Particle Level Set Method

Negative particles need to collide with solid objects to prevent wa-
ter from leaking through those objects, and we collide them using
a collision distance that is preassigned to each particle by drawing
a random number between.1∆x to ∆x. To collide a particle with
an object, we find the closest point on the object and compute the
object normal at that location. We would like the particle to be at
least its collision distance away from the object, and if it is not we
move it in the normal direction by the required amount. If the parti-
cle intersects any object during this move we either delete it or just
don’t move it. We found that properly colliding negative particles
against objects significantly improves the ability to properly resolve
thin films of fluid against an object.

The particle velocity is determined by casting rays to the 8 neigh-
boring nodal velocities in the same fashion as discussed above for
the base of a semi-Lagrangian ray (see section 4.1). For negative
particles that are closer than their collision distance to the object,
we clamp the normal component of their velocity to be at least
that of the object so that they do not get any closer to it. [Enright
et al. 2005] showed that second order accurate particle evolution
was quite important, especially when using the semi-Lagrangian
method for level set advection. To achieve this, we first evolve the
particles forward in time robustly colliding against the (stationary)
object. Then we interpolate a new velocity at this location and av-
erage it with the original velocity to get a second order accurate
velocity, before moving the particle back to its original location.
For negative particles, we clamp the normal component of this av-
eraged velocity if they are either within their collision distance to
the object or they collided with the object when they were originally
evolved.

Before moving each particle with its second order accurate veloc-
ity, we check for intersections between the particle center and the
movingobject. We delete positive particles that intersect the object,
but attempt to adjust negative particles using the triangle they in-

tersect. With the particle and triangle in their initial position, we
record which side of the triangle the particle is on using the triangle
normal. Then with the particle and triangle in their final position,
we move the particle normal to the triangle so that it is on the same
side as before and offset by its collision distance in the normal di-
rection. Finally, we check this new particle path against the moving
object and delete the particle if it still intersects the object. After
advection, all negative particles are adjusted to be at least their col-
lision distance away from the object as discussed above.

After updating both the level set and the particles, we modify the
level set values using the particles. This is done in a collision aware
fashion using onlyvisible particles. The final step in the particle
level set method is to adjust the radius of the particles based on
the values ofφ , and possibly delete particles that have escaped too
far from the interface. This is accomplished by evaluatingφ at the
center of the particle in the same fashion as is done at the base of
a semi-Lagrangian ray. Periodically, every 10-20 frames, particles
are reseeded to get a better representation of the interface. Initially,
this is performed disregarding the object altogether (for efficiency).
Then as a postprocess, we evaluateφ at the center of the particle
and delete particles with the wrong sign.

5 Cloth and Thin Shell Simulation

The novelty of our method lies both in the treatment of the fluid and
in the interaction between the fluid and the solid, not in the simu-
lation of the solids themselves. Thus, the solid simulation can be
treated as a black box. This is a significant feature of our approach
as one can use their favorite simulation technology for the solid
object independent of the fluid solver and the solid/fluid two way
coupling algorithm. All that is required is positions of the nodes of
the triangulated surface at discrete time intervals, and from this we
can calculate a velocity for each point assuming that it is piecewise
constant between fluid time steps. When velocities within a triangle
are required, we interpolate using the barycentric coordinates. For
rigid body simulation, we use the method of [Guendelman et al.
2003], although our examples require no technology beyond that
in [Hahn 1988; Moore and Wilhelms 1988]. For cloth, we use the
basic cloth model from [Bridson et al. 2003] including their bend-
ing formulation, and the self-collision algorithm of [Bridson et al.
2002].

Figure 8: Two way coupled water flows over cloth (suspended at four corners), demonstrating that thin objects can support a sheet of water
without leaks (2003 effective resolution octree grid, 30K triangles in the cloth).

5.1 Coupling to the Fluid

The traditional method for coupling fluids and solids is to use the
solid to prescribe velocity boundary conditions on the fluid, and
the fluid to provide force boundary conditions on the solid [Benson
1992]. And as mentioned in section 4.3, it is important to coerce
the fluid to move with the velocity of the solid so that thin films and
sheets can be supported with little to no mass loss. For compress-
ible fluids, one typically uses the pressure to provide a force on the
surface of the solid, but for incompressible flow the pressure can be
both stiff and noisy as compared to the velocity field, as discussed
in [Fedkiw 2002]. Thus, we propose a new method that allows one
to obtain forces on a thin deformable or rigid solid.

As in section 4.3, we cast rays from each cell center to the 6 neigh-
boring cell centers to see if an object cuts through the line segment
connecting the pressures as shown in Figure 5. And if so, we copy
the local solid object velocity to the corresponding cell face in the
usual fashion. In addition, we multiply the area of the face times
the surface density of the solid to calculate a mass,m, for the cell
face. Then we divide this mass by the local control volume which
amounts to half of each neighboring cell (divided up appropriately
among the faces for octrees). For a uniform gridV =4x4y4z. Fi-
nally, the density of the cell face is set tom/V. All other cell faces
have their density set to the fluid density. Since this is now a vari-
able density flow, we need to solve a variable coefficient Poisson
equation as in [Nguyen et al. 2002] where the analog to equations
3 and 4 are

unew= uold−∆t∇p/ρ (5)

and

∇ · (∇p/ρ) = ∇ ·uold/∆t (6)

respectively.

Note that we do not move the solid with this fluid velocity as for
example in [Carlson et al. 2004] and [Zhu and Peskin 2002], but
only use this velocity calculation to provide forces to the solid. The
key advantage is that we do not have to figure out how to model
solid response due to buoyancy, collisions, elasticity, etc. on the
fluid dynamics grid and can instead simulate the solid with any
black box method including finite elements, masses and springs,
one’s favorite collision algorithms, implicit or semi-implicit time
integration, etc. As an added bonus, we are not hindered by the

resolution of the fluid dynamics grid when evolving the solid, and
a coarse grid merely provides a smeared out fluid force while still
allowing all other solid dynamics and motion to be modeled with
independently high resolution.

To calculate the force on the solid (after solving equation 6), we
first calculate the pressure difference across each cell face that was
considered to be part of the solid. Then we transfer the pressure
differences from the faces to the nodes assigning the nodal value to
be the average of the up to four face values that may be adjacent to
it. We then spread these nodal differences to a band of grid points
near the solid using the same Gauss-Jacobi averaging used to vali-
dateinvalid nodes. This entire process is carried out independently
for the pressure differences in each of the three coordinate direc-
tions. Then trilinear interpolation can be used to interpolate the
vector pressure difference to the barycenter of each triangle, and a
dot product with the triangle normal gives the pressure difference
normal to (or across) the triangle face. Finally, we multiply by the
triangle area and normal to get the net force on the face. In the case
of a rigid body, the force and torque are accumulated by accounting
for all the triangles. In the case of cloth, one third of the net force
on a triangle is distributed to each node.

Since Neumann boundary conditions are enforced across the thin
triangulated surface when solving equation 4, the computed pres-
sure may have large jumps and contain noise. This is because that
pressure has to force the fluid to take on the velocity of the solid
to better enforce mass conservation. In contrast, Neumann condi-
tions are not enforced when solving equation 6, and the computed
pressure acts to change the velocities corresponding to the solid in
equation 5 (although we do not actually apply this velocity change
directly to the solid). This ability to account for the fluid’s influ-
ence on the solid while solving an elliptic equation for the pressure
provides for a much more stable coupling mechanism and smoother
pressure values.

6 Algorithm Summary

Sequentially, the overall algorithm proceeds as follows. First,
we compute the intermediate velocityu∗ using knowledge of the
solid’s position at both timen and timen+1. Then we useu∗ for
uold solving equation 6 for the solid fluid coupling pressure. This
pressure is used to compute forces on the solid as it is evolved from
time n+ 1 to timen+ 2, and that motion is used to compute the

Figure 9: Illustration of the removed negative particles rendered
as an opaque Lambertian surface (after proper blending). These
particles have crossed over to the wrong side of the level set surface,
but are too finely detailed to be properly represented by the fluid
simulation grid.

effective velocityused to project the intermediate fluid velocity to
be divergence free as discussed in section 4.3. Then the process is
repeated.

7 Examples

We were able to simulate computational grids with effective reso-
lutions as large as 256×256×192 for the fluid and as many as 90k
triangles for the rigid and deforming bodies using a 3 GHz Pentium
4. The computational cost ranged from 5 to 20 minutes per frame,
and thus the longest examples took a couple of days. Rendering
smoke and water against thin objects such as cloth poses complica-
tions as standard techniques interpolate density and level set values
with stencils that intersect with thin bodies. Thus, we augmented
a standard ray tracer with robust intersections and interpolations.
That is, we used the same visibility based schemes used in simula-
tion. This effectively removes visual artifacts caused by smoke and
water showing through to the other side of objects, and air pockets
showing through to the smoke and water side.

Figure 2 depicts a smoke stream flowing toward a suspended cloth
curtain, and the two-way coupling generates interesting wrinkles
and folds as well as smoke motion. Figure 4 depicts a kinemati-
cally controlled cup dipped, raised, and poured, demonstrating that
our technique can model liquid behavior on both sides of a trian-
gulated surface independently. Figure 6 shows similar behavior for
more complex geometry. Full two-way coupling can be used with
rigid shells as well, and Figure 7 shows a fullydynamic simulation
of a boat floating until a stream of water sinks it. Figure 8 shows
a stream of water flowing over a piece of cloth demonstrating full
two-way coupling of cloth and water. Note specifically that the
cloth supports the water (without leaks) and produces highly de-
tailed thin water sheets flowing off the sides. For this example we
augmented our ray tracer to additionally render the removed neg-
ative particles generated by the particle level set method, see Fig-
ure 9. This is accomplished by elongating the particles in the direc-
tion of their velocity vector, blending them together, and rasterizing
both the particles and the level set function onto a fine octree grid
before rendering. These particles added visually interesting splash
and spray to the animation. Lastly, Figure 1 depicts a stream of

water flowing onto a cloth curtain causing it to deform.

8 Conclusions and Future Work

We have presented a new computational algorithm for the coupling
of incompressible flows to thin objects represented by moving tri-
angulated surfaces. Examples were presented to demonstrate that
this algorithm works well for one phase fluids such as smoke and
for fluids with interfaces such as water. Moreover, it works with
both rigid and deformable triangulated surfaces. Most importantly,
our method prevents the leaking of material across the triangulated
surface, while accurately enforcing the incompressibility condition
in a one-sided fashion allowing for the interaction of thin films of
water with highly deformable thin objects such as cloth.

Future work will include improvements in the way the removed par-
ticles are shaped, blended, and rendered. So far they were only used
in Figures 8 and 9. In addition, it would be interesting to model the
absorption of water by the cloth changing both its appearance and
simulation properties. Also interesting, but not currently modeled,
is the adhesion of water to the cloth.

9 Acknowledgements

Research supported in part by an ONR YIP award and a PECASE
award (ONR N00014-01-1-0620), a Packard Foundation Fellow-
ship, a Sloan Research Fellowship, ONR N00014-03-1-0071,
ONR N00014-02-1-0720, ARO DAAD19-03-1-0331, NSF ITR-
0121288, NSF DMS-0106694, NSF ACI-0323866, NSF IIS-
0326388 and NSF ITR-0205671. We’d also like to thank Mike
Houston, Christos Kozyrakis, Mark Horowitz, Bill Dally and Vi-
jay Pande for computing resources.

References

BARAFF, D., AND WITKIN , A. 1998. Large steps in cloth simulation. In
Proc. SIGGRAPH 98, 1–12.

BARAFF, D., WITKIN , A., AND KASS, M. 2003. Untangling cloth.ACM
Trans. Graph. (SIGGRAPH Proc.) 22, 862–870.

BARAFF, D. 1993. Issues in computing contact forces for non-penetrating
rigid bodies.Algorithmica, 10, 292–352.

BARAFF, D. 1994. Fast contact force computation for nonpenetrating rigid
bodies. InProc. SIGGRAPH 94, 23–34.

BENSON, D. 1992. Computational methods in lagrangian and eulerian
hydrocodes.Comput. Meth. in Appl. Mech. and Eng. 99, 235–394.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treat-
ment of collisions, contact and friction for cloth animation.ACM Trans.
Graph. (SIGGRAPH Proc.) 21, 594–603.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation of
clothing with folds and wrinkles. InProc. of the 2003 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 28–36.

CARLSON, M., MUCHA, P. J.,AND TURK, G. 2004. Rigid fluid: Ani-
mating the interplay between rigid bodies and fluid.ACM Trans. Graph.
(SIGGRAPH Proc.) 23, 377–384.

CHEN, J.,AND LOBO, N. 1994. Toward interactive-rate simulation of flu-
ids with moving obstacles using the navier-stokes equations.Computer
Graphics and Image Processing 57, 107–116.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth.ACM
Trans. Graph. (SIGGRAPH Proc.) 21, 604–611.

COHEN, J. M., AND MOLEMAKER, M. J. 2004. Practical simulation of
surface tension flows. InSIGGRAPH 2004 Sketches & Applications,
ACM Press.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Animation and
rendering of complex water surfaces.ACM Trans. Graph. (SIGGRAPH
Proc.) 21, 3, 736–744.

ENRIGHT, D., NGUYEN, D., GIBOU, F., AND FEDKIW, R. 2003. Us-
ing the particle level set method and a second order accurate pressure
boundary condition for free surface flows. InProc. 4th ASME-JSME
Joint Fluids Eng. Conf., no. FEDSM2003–45144, ASME.

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2005. A fast and accurate
semi-Lagrangian particle level set method.Computers and Structures
83, 479–490.

FATTAL , R., AND L ISCHINSKI, D. 2004. Target-driven smoke animation.
ACM Trans. Graph. (SIGGRAPH Proc.) 23, 441–448.

FEDKIW, R., STAM , J., AND JENSEN, H. 2001. Visual simulation of
smoke. InProc. of ACM SIGGRAPH 2001, 15–22.

FEDKIW, R. 2002. Coupling an Eulerian fluid calculation to a Lagrangian
solid calculation with the ghost fluid method.J. Comput. Phys. 175,
200–224.

FELDMAN , B. E., O’BRIEN, J. F.,AND ARIKAN , O. 2003. Animating
suspended particle explosions.ACM Trans. Graph. (SIGGRAPH Proc.)
22, 3, 708–715.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids. In
Proc. of ACM SIGGRAPH 2001, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of liquids.
Graph. Models and Image Processing 58, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid animation. In
Computer Graphics International 1997, 178–188.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a hot,
turbulent gas. InProc. of SIGGRAPH 97, 181–188.

GÉNEVAUX , O., HABIBI , A., AND DISCHLER, J.-M. 2003. Simulating
fluid-solid interaction. InGraphics Interface, 31–38.

GOKTEKIN , T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004. A
method for animating viscoelastic fluids.ACM Trans. Graph. (SIG-
GRAPH Proc.) 23.

GRINSPUN, E., HIRANI , A., DESBRUN, M., AND SCHRODER, P. 2003.
Discrete shells. InProc. of the 2003 ACM SIGGRAPH/Eurographics
Symp. on Comput. Anim., 62–67.

GUENDELMAN , E., BRIDSON, R., AND FEDKIW, R. 2003. Nonconvex
rigid bodies with stacking.ACM Trans. Graph. (SIGGRAPH Proc.) 22,
3, 871–878.

HADAP, S.,AND MAGNENAT-THALMANN , N. 2001. Modeling Dynamic
Hair as a Continuum.Comput. Graph. Forum 20, 3.

HAHN , J. K. 1988. Realistic animation of rigid bodies.Comput. Graph.
(Proc. SIGGRAPH 88) 22, 4, 299–308.

HONG, J.-M., AND K IM , C.-H. 2003. Animation of bubbles in liquid.
Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253–262.

HOUSTON, B., WIEBE, M., AND BATTY, C. 2004. Rle sparse level sets.
In SIGGRAPH 2004 Sketches & Applications, ACM Press.

IVERSEN, J., AND SAKAGUCHI , R. 2004. Growing up with fluid sim-
ulation on “the day after tomorrow”. InSIGGRAPH 2004 Sketches &
Applications, ACM Press.

KANG, M., FEDKIW, R., AND L IU , X.-D. 2000. A boundary condition
capturing method for multiphase incompressible flow.J. Sci. Comput.
15, 323–360.

KASS, M., AND M ILLER , G. 1990. Rapid, stable fluid dynamics for com-
puter graphics. InComputer Graphics (Proc. of SIGGRAPH 90), vol. 24,
49–57.

KONDOH, N., KUNIMATSU , A., AND SASAGAWA , S. 2004. Creating
animations of fluids and cloth with moving characters. InSIGGRAPH
2004 Sketches & Applications, ACM Press.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of natural
flames.ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 729–735.

L I , Z., AND LAI , M.-C. 2001. The immersed interface method for navier-
stokes equations with singular forces.J. Comput. Phys. 171, 822–842.

L ING, L., DAMODARAN , M., AND GAY, K. 1996. Aerodynamic force
models for animating cloth motion in air flow. InThe Visual Computer,

84–104.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water and
smoke with an octree data structure.ACM Trans. Graph. (SIGGRAPH
Proc.), 457–462.

MCNAMARA , A., TREUILLE, A., POPOVIĆ, Z., AND STAM , J. 2004.
Fluid control using the adjoint method.ACM Trans. Graph. (SIGGRAPH
Proc.).

M IHALEF, V., METAXAS, D., AND SUSSMAN, M. 2004. Anima-
tion and control of breaking waves. InProc. of the 2004 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 315–324.

MOORE, M., AND WILHELMS , J. 1988. Collision detection and response
for computer animation.Comput. Graph. (Proc. SIGGRAPH 88) 22, 4,
289–298.

MULLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-based fluid
simulation for interactive applications. InProc. of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 154–159.

MULLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER, B., AND

GROSS, M. 2004. Interaction of fluids with deformable solids.J. Com-
put. Anim. and Virt. Worlds 15, 3–4 (July), 159–171.

NGUYEN, D., FEDKIW, R., AND JENSEN, H. 2002. Physically based
modeling and animation of fire. InACM Trans. Graph. (SIGGRAPH
Proc.), vol. 29, 721–728.

NIXON , D., AND LOBB, R. 2002. A fluid-based soft-object model.IEEE
Comput. Graph. Appl. 22, 4, 68–75.

NOH, W. 1964. CEL: A time-dependent, two-space-dimensional, coupled
Eulerian-Lagrange code. Academic Press, New York, 117–179.

OSHER, S., AND FEDKIW, R. 2002. Level Set Methods and Dynamic
Implicit Surfaces. Springer-Verlag. New York, NY.

PESKIN, C. 1972. Flow patterns around heart valves: A numerical method.
J. Comput. Phys. 10, 252–271.

PESKIN, C. 2002. The immersed boundary method.Acta Numerica 11,
479–517.

PEYRET, R., AND TAYLOR , T. D. 1983.Computational methods for fluid
flow. Springer-Verlag. New York.

PREMOZE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND

WHITAKER , R. 2003. Particle–based simulation of fluids. InComp.
Graph. Forum (Eurographics Proc.), vol. 22, 401–410.

RASMUSSEN, N., NGUYEN, D., GEIGER, W., AND FEDKIW, R. 2003.
Smoke simulation for large scale phenomena.ACM Trans. Graph. (SIG-
GRAPH Proc.) 22, 703–707.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S., SUMNER,
N., GEIGER, W., HOON, S., AND FEDKIW, R. 2004. Directible pho-
torealistic liquids. InProc. of the 2004 ACM SIGGRAPH/Eurographics
Symp. on Comput. Anim., 193–202.

STAM , J. 1999. Stable fluids. InProc. of SIGGRAPH 99, 121–128.

STAM , J. 2003. Flows on surfaces of arbitrary topology.ACM Trans.
Graph. (SIGGRAPH Proc.) 22, 724–731.

TREUILLE, A., MCNAMARA , A., POPOVIĆ, Z., AND STAM , J. 2003.
Keyframe control of smoke simulations.ACM Trans. Graph. (SIG-
GRAPH Proc.) 22, 3, 716–723.

WEI, X., ZHAO, Y., FAN , Z., LI , W., YOAKUM -STOVER, S.,AND KAUF-
MAN , A. 2003. Blowing in the wind. InProc. of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 75–85.

WEJCHERT, J., AND HAUMANN , D. 1991. Animation Aerodynamics.
Comput. Graph. 25, 4, 19–22.

WIEBE, M., AND HOUSTON, B. 2004. The tar monster: Creating a charac-
ter with fluid simulation. InSIGGRAPH 2004 Sketches & Applications,
ACM Press.

YNGVE, G., O’BRIEN, J.,AND HODGINS, J. 2000. Animating explosions.
In Proc. SIGGRAPH 2000, vol. 19, 29–36.

ZHU, L., AND PESKIN, C. 2002. Simulation of a flapping flexible filament
in a flowing soap film by the immersed boundary method.J. Comput.
Phys. 179, 452–468.

